Confidence Intervals (Cont.)

Normal 2-sided for Quantile (β)

$$(\overline{x} + k_{2,\alpha,\beta,n}s < \beta < \overline{x} + k_{2,1-\alpha,\beta,n}s) = 1 - \alpha$$

Normal 1-sided for Quantile (β)

$$(\overline{x} + k_{1,\alpha,\beta,n} s < \beta) = 1 - \alpha$$
 $(\beta < \overline{x} + k_{1,1-\alpha,\beta,n} s) = 1 - \alpha$

Normal 2-sided Confidence Intervals for Quantiles

$$k_{2,\alpha,\beta,n} = r \sqrt{\frac{n-1}{\chi_{1-\alpha,\nu}^2}} \qquad k_{2,1-\alpha,\beta,n} = r \sqrt{\frac{n-1}{\chi_{\alpha,\nu}^2}}$$

$$\beta = \int_{1/\sqrt{n}-r}^{1/\sqrt{n}+r} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = F(1/\sqrt{n}+r) - F(1/\sqrt{n}-r)$$

Given desired β must first solve bottom equation for r (requires iteration) and then given r and a desired α must solve top equations to obtain the k_2 coefficients.

Normal 1-sided Confidence Intervals for Quantiles

$$k_{1,1-\alpha,\beta,n} = \frac{t'_{1-\alpha,n-1,z_{\beta}}\sqrt{n}}{\sqrt{n}}$$

$$k_{1,1-\alpha,\beta,n} = \frac{t'_{1-\alpha,n-1,z_{\beta}}\sqrt{n}}{\sqrt{n}} \qquad k_{1,\alpha,\beta,n} = \frac{t'_{\alpha,n-1,z_{\beta}}\sqrt{n}}{\sqrt{n}}$$

Noncentral t Distribution

Illustration – Normal 2-sided Confidence Interval for 0.95 Quantile

Da	ata
5	
7	2
7	1
4	9
6	3
3	3
4	8
5	1
3	4
6	1

$$[53.3 + (1.4982)(13.6) < \beta < 53.3 + (3.3794)(13.6)] = 1 - 0.05$$

$$(73.6 < \beta < 99.2) = 0.95$$

Thus, given that the data represent a random sample from a normal population, we can state that with 95% confidence the interval 73.6 – 99.2 contains the 95th Percentile of the population (on average, 95 out of 100 such random interval realizations would contain β).